
CSCI 210: Computer Architecture

Lecture 26: Control Path

Stephen Checkoway

Oberlin College

Apr. 27, 2022

Slides from Cynthia Taylor

1

Announcements

• Problem Set 8 due Friday

• Lab 7 due Sunday

• Office Hours Friday 13:30–14:30

Full Datapath So Far

Control Path

• Our datapath is complicated, and we don’t use each element

every time

• How do we know which elements to use?

Datapath With Control

The Main Control Unit
Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

0x23,0x2B rs rt offset

31:26 25:21 20:16 15:0

0x04,0x05 rs rt offset

31:26 25:21 20:16 15:0

R-type

Load/

Store

Branch

opcode always

read

always

read;

not used

for load

write for

R-type and

load

sign-extend

and add

Fetching Instructions

• Read instruction from Instruction Memory

• Updating PC value to address of next (sequential)

instruction

• PC is updated every clock cycle, so it does not need

an explicit write control signal just a clock signal

• Read from memory each time, so we don’t need an

explicit control signal
Read

Address
Instruction

Instruction

Memory

Add

PC

4

Decoding Instructions

• Send fetched instruction’s

opcode to the main control unit

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

Control

Unit

• Read two values from the Register File

• Register File addresses are contained in the

instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/

Store

After decode

After reading opcode

• Produce most control

signals

• Includes the ALUOp

control signal—which

goes to the ALU control

unit—and the ALUSrc

control signal which

selects the ALU’s second

operand

ALU Control Unit

• Combinational logic derives 2-bit ALUOp signal from opcode

• ALU Control Unit takes ALUOp and instruction funct field as

inputs and derives a 4-bit ALU control signal

opcode ALUOp Operation ALU function

lw 00 load word add

sw 00 store word add

beq 01 branch equal subtract

R-type 10 arithmetic/logic depends on funct

For load/store, our ALU operation will be

A. Add

B. And

C. Set less than

D. Subtract

E. None of the above

ALU Control
• ALU used for

– Load/Store: op = add

– Branch: op = subtract

– R-type: op depends on funct field

ALU control Function Ainvert Binvert/CarryIn0 Operation

0000 AND 0 0 00

0001 OR 0 0 01

0010 add 0 0 10

0110 subtract 0 1 10

0111 set-on-less-than 0 1 11

1100 NOR 1 1 00

ALU Control

opcode Instruction ALUOp funct ALU function ALU control

lw load word 00 XXXXXX add 0010

sw store word 00 XXXXXX add 0010

beq branch equal 01 XXXXXX subtract 0110

R-type add 10 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Executing R Format Operations
• R format operations (add, sub, slt, and, or)

– perform operation (specified by funct) on values in rs and rt

– store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

R-type:

31 25 20 15 5 0

op rs rt rd functshamt

10

Note that Register File is not written every cycle (e.g., sw), so we

need an explicit write control signal for the Register File

Select RegDst MemToReg

A 0 X

B 1 X

C 0 1

D 1 0

E None of the above

instruction control signals for ADD?

Reading

• Next lecture: Pipelining

– Section 5.6

• Problem Set 8 due Friday

• Lab 7 due Sunday

33

